Paper ID: 2410.03141

Machine Learning for Asymptomatic Ratoon Stunting Disease Detection With Freely Available Satellite Based Multispectral Imaging

Ethan Kane Waters, Carla Chia-ming Chen, Mostafa Rahimi Azghadi

Disease detection in sugarcane, particularly the identification of asymptomatic infectious diseases such as Ratoon Stunting Disease (RSD), is critical for effective crop management. This study employed various machine learning techniques to detect the presence of RSD in different sugarcane varieties, using vegetation indices derived from freely available satellite-based spectral data. Our results show that the Support Vector Machine with a Radial Basis Function Kernel (SVM-RBF) was the most effective algorithm, achieving classification accuracy between 85.64% and 96.55%, depending on the variety. Gradient Boosting and Random Forest also demonstrated high performance achieving accuracy between 83.33% to 96.55%, while Logistic Regression and Quadratic Discriminant Analysis showed variable results across different varieties. The inclusion of sugarcane variety and vegetation indices was important in the detection of RSD. This agreed with what was identified in the current literature. Our study highlights the potential of satellite-based remote sensing as a cost-effective and efficient method for large-scale sugarcane disease detection alternative to traditional manual laboratory testing methods.

Submitted: Oct 4, 2024