Paper ID: 2410.03171
Selective Transformer for Hyperspectral Image Classification
Yichu Xu, Di Wang, Lefei Zhang, Liangpei Zhang
Transformer has achieved satisfactory results in the field of hyperspectral image (HSI) classification. However, existing Transformer models face two key challenges when dealing with HSI scenes characterized by diverse land cover types and rich spectral information: (1) fixed receptive field representation overlooks effective contextual information; (2) redundant self-attention feature representation. To address these limitations, we propose a novel Selective Transformer (SFormer) for HSI classification. The SFormer is designed to dynamically select receptive fields for capturing both spatial and spectral contextual information, while mitigating the impact of redundant data by prioritizing the most relevant features. This enables a highly accurate classification of the land covers of the HSI. Specifically, a Kernel Selective Transformer Block (KSTB) is first utilized to dynamically select an appropriate receptive field range to effectively extract spatial-spectral features. Furthermore, to capture the most crucial tokens, a Token Selective Transformer Block (TSTB) is introduced, which selects the most relevant tokens based on the ranking of attention scores for each query. Extensive experiments on four benchmark HSI datasets demonstrate that the proposed SFormer outperforms the state-of-the-art HSI classification models. The codes will be released.
Submitted: Oct 4, 2024