Paper ID: 2410.03211
CUDLE: Learning Under Label Scarcity to Detect Cannabis Use in Uncontrolled Environments
Reza Rahimi Azghan, Nicholas C. Glodosky, Ramesh Kumar Sah, Carrie Cuttler, Ryan McLaughlin, Michael J. Cleveland, Hassan Ghasemzadeh
Wearable sensor systems have demonstrated a great potential for real-time, objective monitoring of physiological health to support behavioral interventions. However, obtaining accurate labels in free-living environments remains difficult due to limited human supervision and the reliance on self-labeling by patients, making data collection and supervised learning particularly challenging. To address this issue, we introduce CUDLE (Cannabis Use Detection with Label Efficiency), a novel framework that leverages self-supervised learning with real-world wearable sensor data to tackle a pressing healthcare challenge: the automatic detection of cannabis consumption in free-living environments. CUDLE identifies cannabis consumption moments using sensor-derived data through a contrastive learning framework. It first learns robust representations via a self-supervised pretext task with data augmentation. These representations are then fine-tuned in a downstream task with a shallow classifier, enabling CUDLE to outperform traditional supervised methods, especially with limited labeled data. To evaluate our approach, we conducted a clinical study with 20 cannabis users, collecting over 500 hours of wearable sensor data alongside user-reported cannabis use moments through EMA (Ecological Momentary Assessment) methods. Our extensive analysis using the collected data shows that CUDLE achieves a higher accuracy of 73.4%, compared to 71.1% for the supervised approach, with the performance gap widening as the number of labels decreases. Notably, CUDLE not only surpasses the supervised model while using 75% less labels, but also reaches peak performance with far fewer subjects.
Submitted: Oct 4, 2024