Paper ID: 2410.03505

Classification-Denoising Networks

Louis Thiry, Florentin Guth

Image classification and denoising suffer from complementary issues of lack of robustness or partially ignoring conditioning information. We argue that they can be alleviated by unifying both tasks through a model of the joint probability of (noisy) images and class labels. Classification is performed with a forward pass followed by conditioning. Using the Tweedie-Miyasawa formula, we evaluate the denoising function with the score, which can be computed by marginalization and back-propagation. The training objective is then a combination of cross-entropy loss and denoising score matching loss integrated over noise levels. Numerical experiments on CIFAR-10 and ImageNet show competitive classification and denoising performance compared to reference deep convolutional classifiers/denoisers, and significantly improves efficiency compared to previous joint approaches. Our model shows an increased robustness to adversarial perturbations compared to a standard discriminative classifier, and allows for a novel interpretation of adversarial gradients as a difference of denoisers.

Submitted: Oct 4, 2024