Paper ID: 2410.03908

Still Not Quite There! Evaluating Large Language Models for Comorbid Mental Health Diagnosis

Amey Hengle, Atharva Kulkarni, Shantanu Patankar, Madhumitha Chandrasekaran, Sneha D'Silva, Jemima Jacob, Rashmi Gupta

In this study, we introduce ANGST, a novel, first-of-its kind benchmark for depression-anxiety comorbidity classification from social media posts. Unlike contemporary datasets that often oversimplify the intricate interplay between different mental health disorders by treating them as isolated conditions, ANGST enables multi-label classification, allowing each post to be simultaneously identified as indicating depression and/or anxiety. Comprising 2876 meticulously annotated posts by expert psychologists and an additional 7667 silver-labeled posts, ANGST posits a more representative sample of online mental health discourse. Moreover, we benchmark ANGST using various state-of-the-art language models, ranging from Mental-BERT to GPT-4. Our results provide significant insights into the capabilities and limitations of these models in complex diagnostic scenarios. While GPT-4 generally outperforms other models, none achieve an F1 score exceeding 72% in multi-class comorbid classification, underscoring the ongoing challenges in applying language models to mental health diagnostics.

Submitted: Oct 4, 2024