Paper ID: 2410.04084

Taming the Tail: Leveraging Asymmetric Loss and Pade Approximation to Overcome Medical Image Long-Tailed Class Imbalance

Pankhi Kashyap, Pavni Tandon, Sunny Gupta, Abhishek Tiwari, Ritwik Kulkarni, Kshitij Sharad Jadhav

Long-tailed problems in healthcare emerge from data imbalance due to variability in the prevalence and representation of different medical conditions, warranting the requirement of precise and dependable classification methods. Traditional loss functions such as cross-entropy and binary cross-entropy are often inadequate due to their inability to address the imbalances between the classes with high representation and the classes with low representation found in medical image datasets. We introduce a novel polynomial loss function based on Pade approximation, designed specifically to overcome the challenges associated with long-tailed classification. This approach incorporates asymmetric sampling techniques to better classify under-represented classes. We conducted extensive evaluations on three publicly available medical datasets and a proprietary medical dataset. Our implementation of the proposed loss function is open-sourced in the public repository:this https URL.

Submitted: Oct 5, 2024