Paper ID: 2410.04088
Cross Resolution Encoding-Decoding For Detection Transformers
Ashish Kumar, Jaesik Park
Detection Transformers (DETR) are renowned object detection pipelines, however computationally efficient multiscale detection using DETR is still challenging. In this paper, we propose a Cross-Resolution Encoding-Decoding (CRED) mechanism that allows DETR to achieve the accuracy of high-resolution detection while having the speed of low-resolution detection. CRED is based on two modules; Cross Resolution Attention Module (CRAM) and One Step Multiscale Attention (OSMA). CRAM is designed to transfer the knowledge of low-resolution encoder output to a high-resolution feature. While OSMA is designed to fuse multiscale features in a single step and produce a feature map of a desired resolution enriched with multiscale information. When used in prominent DETR methods, CRED delivers accuracy similar to the high-resolution DETR counterpart in roughly 50% fewer FLOPs. Specifically, state-of-the-art DN-DETR, when used with CRED (calling CRED-DETR), becomes 76% faster, with ~50% reduced FLOPs than its high-resolution counterpart with 202 G FLOPs on MS-COCO benchmark. We plan to release pretrained CRED-DETRs for use by the community. Code: this https URL
Submitted: Oct 5, 2024