Paper ID: 2410.04271
Fundamental Limitations on Subquadratic Alternatives to Transformers
Josh Alman, Hantao Yu
The Transformer architecture is widely deployed in many popular and impactful Large Language Models. At its core is the attention mechanism for calculating correlations between pairs of tokens. Performing an attention computation takes quadratic time in the input size, and had become the time bottleneck for transformer operations. In order to circumvent this, researchers have used a variety of approaches, including designing heuristic algorithms for performing attention computations faster, and proposing alternatives to the attention mechanism which can be computed more quickly. For instance, state space models such as Mamba were designed to replace attention with an almost linear time alternative. In this paper, we prove that any such approach cannot perform important tasks that Transformer is able to perform (assuming a popular conjecture from fine-grained complexity theory). We focus on document similarity tasks, where one is given as input many documents and would like to find a pair which is (approximately) the most similar. We prove that Transformer is able to perform this task, and we prove that this task cannot be performed in truly subquadratic time by any algorithm. Thus, any model which can be evaluated in subquadratic time - whether because of subquadratic-time heuristics for attention, faster attention replacements like Mamba, or any other reason - cannot perform this task. In other words, in order to perform tasks that (implicitly or explicitly) involve document similarity, one may as well use Transformer and cannot avoid its quadratic running time.
Submitted: Oct 5, 2024