Paper ID: 2410.05307

Topology-Informed Machine Learning for Efficient Prediction of Solid Oxide Fuel Cell Electrode Polarization

Maksym Szemer, Szymon Buchaniec, Tomasz Prokop, Grzegorz Brus

Machine learning has emerged as a potent computational tool for expediting research and development in solid oxide fuel cell electrodes. The effective application of machine learning for performance prediction requires transforming electrode microstructure into a format compatible with artificial neural networks. Input data may range from a comprehensive digital material representation of the electrode to a selected set of microstructural parameters. The chosen representation significantly influences the performance and results of the network. Here, we show a novel approach utilizing persistence representation derived from computational topology. Using 500 microstructures and current-voltage characteristics obtained with 3D first-principles simulations, we have prepared an artificial neural network model that can replicate current-voltage characteristics of unseen microstructures based on their persistent image representation. The artificial neural network can accurately predict the polarization curve of solid oxide fuel cell electrodes. The presented method incorporates complex microstructural information from the digital material representation while requiring substantially less computational resources (preprocessing and prediction time approximately 1 min) compared to our high-fidelity simulations (simulation time approximately 1 hour) to obtain a single current-potential characteristic for one microstructure.

Submitted: Oct 4, 2024