Paper ID: 2410.05540
Game of Coding: Sybil Resistant Decentralized Machine Learning with Minimal Trust Assumption
Hanzaleh Akbari Nodehi, Viveck R. Cadambe, Mohammad Ali Maddah-Al
Coding theory plays a crucial role in ensuring data integrity and reliability across various domains, from communication to computation and storage systems. However, its reliance on trust assumptions for data recovery poses significant challenges, particularly in emerging decentralized systems where trust is scarce. To address this, the game of coding framework was introduced, offering insights into strategies for data recovery within incentive-oriented environments. The focus of the earliest version of the game of coding was limited to scenarios involving only two nodes. This paper investigates the implications of increasing the number of nodes in the game of coding framework, particularly focusing on scenarios with one honest node and multiple adversarial nodes. We demonstrate that despite the increased flexibility for the adversary with an increasing number of adversarial nodes, having more power is not beneficial for the adversary and is not detrimental to the data collector, making this scheme sybil-resistant. Furthermore, we outline optimal strategies for the data collector in terms of accepting or rejecting the inputs, and characterize the optimal noise distribution for the adversary.
Submitted: Oct 7, 2024