Paper ID: 2410.05573
TaeBench: Improving Quality of Toxic Adversarial Examples
Xuan Zhu, Dmitriy Bespalov, Liwen You, Ninad Kulkarni, Yanjun Qi
Toxicity text detectors can be vulnerable to adversarial examples - small perturbations to input text that fool the systems into wrong detection. Existing attack algorithms are time-consuming and often produce invalid or ambiguous adversarial examples, making them less useful for evaluating or improving real-world toxicity content moderators. This paper proposes an annotation pipeline for quality control of generated toxic adversarial examples (TAE). We design model-based automated annotation and human-based quality verification to assess the quality requirements of TAE. Successful TAE should fool a target toxicity model into making benign predictions, be grammatically reasonable, appear natural like human-generated text, and exhibit semantic toxicity. When applying these requirements to more than 20 state-of-the-art (SOTA) TAE attack recipes, we find many invalid samples from a total of 940k raw TAE attack generations. We then utilize the proposed pipeline to filter and curate a high-quality TAE dataset we call TaeBench (of size 264k). Empirically, we demonstrate that TaeBench can effectively transfer-attack SOTA toxicity content moderation models and services. Our experiments also show that TaeBench with adversarial training achieve significant improvements of the robustness of two toxicity detectors.
Submitted: Oct 8, 2024