Paper ID: 2410.05578
Swift Sampler: Efficient Learning of Sampler by 10 Parameters
Jiawei Yao, Chuming Li, Canran Xiao
Data selection is essential for training deep learning models. An effective data sampler assigns proper sampling probability for training data and helps the model converge to a good local minimum with high performance. Previous studies in data sampling are mainly based on heuristic rules or learning through a huge amount of time-consuming trials. In this paper, we propose an automatic \textbf{swift sampler} search algorithm, \textbf{SS}, to explore automatically learning effective samplers efficiently. In particular, \textbf{SS} utilizes a novel formulation to map a sampler to a low dimension of hyper-parameters and uses an approximated local minimum to quickly examine the quality of a sampler. Benefiting from its low computational expense, \textbf{SS} can be applied on large-scale data sets with high efficiency. Comprehensive experiments on various tasks demonstrate that \textbf{SS} powered sampling can achieve obvious improvements (e.g., 1.5\% on ImageNet) and transfer among different neural networks. Project page: this https URL.
Submitted: Oct 8, 2024