Paper ID: 2410.05807
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
The underlying mechanism by which simple gradient-based iterative algorithms can effectively handle the non-convex problem of deep model training remains incompletely understood within the traditional convex and non-convex analysis frameworks, which often require the Lipschitz smoothness of the gradient and strong convexity. In this paper, we introduce $\mathcal{H}(\phi)$-convexity and $\mathcal{H}(\Phi)$-smoothness, which broaden the existing concepts of smoothness and convexity, and delineate their fundamental properties. Building on these concepts, we introduce the high-order gradient descent and high-order stochastic gradient descent methods, which serve as extensions to the traditional gradient descent and stochastic gradient descent methods, respectively. Furthermore, we establish descent lemmas for the $\mathcal{H}(\phi)$-convex and $\mathcal{H}(\Phi)$-smooth objective functions when utilizing these four methods. On the basis of these findings, we develop the gradient structure control algorithm to address non-convex optimization objectives, encompassing both the functions represented by machine learning models and common loss functions in deep learning. The effectiveness of the proposed methodology is empirically validated through experiments.
Submitted: Oct 8, 2024