Paper ID: 2410.06239
OrionNav: Online Planning for Robot Autonomy with Context-Aware LLM and Open-Vocabulary Semantic Scene Graphs
Venkata Naren Devarakonda, Raktim Gautam Goswami, Ali Umut Kaypak, Naman Patel, Rooholla Khorrambakht, Prashanth Krishnamurthy, Farshad Khorrami
Enabling robots to autonomously navigate unknown, complex, dynamic environments and perform diverse tasks remains a fundamental challenge in developing robust autonomous physical agents. These agents must effectively perceive their surroundings while leveraging world knowledge for decision-making. Although recent approaches utilize vision-language and large language models for scene understanding and planning, they often rely on offline processing, offboard compute, make simplifying assumptions about the environment and perception, limiting real-world applicability. We present a novel framework for real-time onboard autonomous navigation in unknown environments that change over time by integrating multi-level abstraction in both perception and planning pipelines. Our system fuses data from multiple onboard sensors for localization and mapping and integrates it with open-vocabulary semantics to generate hierarchical scene graphs from continuously updated semantic object map. The LLM-based planner uses these graphs to create multi-step plans that guide low-level controllers in executing navigation tasks specified in natural language. The system's real-time operation enables the LLM to adjust its plans based on updates to the scene graph and task execution status, ensuring continuous adaptation to new situations or when the current plan cannot accomplish the task, a key advantage over static or rule-based systems. We demonstrate our system's efficacy on a quadruped navigating dynamic environments, showcasing its adaptability and robustness in diverse scenarios.
Submitted: Oct 8, 2024