Paper ID: 2410.06315
Incremental Learning for Robot Shared Autonomy
Yiran Tao, Guixiu Qiao, Dan Ding, Zackory Erickson
Shared autonomy holds promise for improving the usability and accessibility of assistive robotic arms, but current methods often rely on costly expert demonstrations and lack the ability to adapt post-deployment. This paper introduces ILSA, an Incrementally Learned Shared Autonomy framework that continually improves its assistive control policy through repeated user interactions. ILSA leverages synthetic kinematic trajectories for initial pretraining, reducing the need for expert demonstrations, and then incrementally finetunes its policy after each manipulation interaction, with mechanisms to balance new knowledge acquisition with existing knowledge retention during incremental learning. We validate ILSA for complex long-horizon tasks through a comprehensive ablation study and a user study with 20 participants, demonstrating its effectiveness and robustness in both quantitative performance and user-reported qualitative metrics. Code and videos are available at this https URL.
Submitted: Oct 8, 2024