Paper ID: 2410.06369
Communication-Efficient Federated Group Distributionally Robust Optimization
Zhishuai Guo, Tianbao Yang
Federated learning faces challenges due to the heterogeneity in data volumes and distributions at different clients, which can compromise model generalization ability to various distributions. Existing approaches to address this issue based on group distributionally robust optimization (GDRO) often lead to high communication and sample complexity. To this end, this work introduces algorithms tailored for communication-efficient Federated Group Distributionally Robust Optimization (FGDRO). Our contributions are threefold: Firstly, we introduce the FGDRO-CVaR algorithm, which optimizes the average top-K losses while reducing communication complexity to $O(1/\epsilon^4)$, where $\epsilon$ denotes the desired precision level. Secondly, our FGDRO-KL algorithm is crafted to optimize KL regularized FGDRO, cutting communication complexity to $O(1/\epsilon^3)$. Lastly, we propose FGDRO-KL-Adam to utilize Adam-type local updates in FGDRO-KL, which not only maintains a communication cost of $O(1/\epsilon^3)$ but also shows potential to surpass SGD-type local steps in practical applications. The effectiveness of our algorithms has been demonstrated on a variety of real-world tasks, including natural language processing and computer vision.
Submitted: Oct 8, 2024