Paper ID: 2410.06452
Modeling chaotic Lorenz ODE System using Scientific Machine Learning
Sameera S Kashyap, Raj Abhijit Dandekar, Rajat Dandekar, Sreedath Panat
In climate science, models for global warming and weather prediction face significant challenges due to the limited availability of high-quality data and the difficulty in obtaining it, making data efficiency crucial. In the past few years, Scientific Machine Learning (SciML) models have gained tremendous traction as they can be trained in a data-efficient manner, making them highly suitable for real-world climate applications. Despite this, very little attention has been paid to chaotic climate system modeling utilizing SciML methods. In this paper, we have integrated SciML methods into foundational weather models, where we have enhanced large-scale climate predictions with a physics-informed approach that achieves high accuracy with reduced data. We successfully demonstrate that by combining the interpretability of physical climate models with the computational power of neural networks, SciML models can prove to be a reliable tool for modeling climate. This indicates a shift from the traditional black box-based machine learning modeling of climate systems to physics-informed decision-making, leading to effective climate policy implementation.
Submitted: Oct 9, 2024