Paper ID: 2410.08025

The Computational Complexity of Circuit Discovery for Inner Interpretability

Federico Adolfi, Martina G. Vilas, Todd Wareham

Many proposed applications of neural networks in machine learning, cognitive/brain science, and society hinge on the feasibility of inner interpretability via circuit discovery. This calls for empirical and theoretical explorations of viable algorithmic options. Despite advances in the design and testing of heuristics, there are concerns about their scalability and faithfulness at a time when we lack understanding of the complexity properties of the problems they are deployed to solve. To address this, we study circuit discovery with classical and parameterized computational complexity theory: (1) we describe a conceptual scaffolding to reason about circuit finding queries in terms of affordances for description, explanation, prediction and control; (2) we formalize a comprehensive set of queries that capture mechanistic explanation, and propose a formal framework for their analysis; (3) we use it to settle the complexity of many query variants and relaxations of practical interest on multi-layer perceptrons (part of, e.g., transformers). Our findings reveal a challenging complexity landscape. Many queries are intractable (NP-hard, $\Sigma^p_2$-hard), remain fixed-parameter intractable (W[1]-hard) when constraining model/circuit features (e.g., depth), and are inapproximable under additive, multiplicative, and probabilistic approximation schemes. To navigate this landscape, we prove there exist transformations to tackle some of these hard problems (NP- vs. $\Sigma^p_2$-complete) with better-understood heuristics, and prove the tractability (PTIME) or fixed-parameter tractability (FPT) of more modest queries which retain useful affordances. This framework allows us to understand the scope and limits of interpretability queries, explore viable options, and compare their resource demands among existing and future architectures.

Submitted: Oct 10, 2024