Paper ID: 2410.08222
Variational Source-Channel Coding for Semantic Communication
Yulong Feng, Jing Xu, Liujun Hu, Guanghui Yu, Xiangyang Duan
Semantic communication technology emerges as a pivotal bridge connecting AI with classical communication. The current semantic communication systems are generally modeled as an Auto-Encoder (AE). AE lacks a deep integration of AI principles with communication strategies due to its inability to effectively capture channel dynamics. This gap makes it difficult to justify the need for joint source-channel coding (JSCC) and to explain why performance improves. This paper begins by exploring lossless and lossy communication, highlighting that the inclusion of data distortion distinguishes semantic communication from classical communication. It breaks the conditions for the separation theorem to hold and explains why the amount of data transferred by semantic communication is less. Therefore, employing JSCC becomes imperative for achieving optimal semantic communication. Moreover, a Variational Source-Channel Coding (VSCC) method is proposed for constructing semantic communication systems based on data distortion theory, integrating variational inference and channel characteristics. Using a deep learning network, we develop a semantic communication system employing the VSCC method and demonstrate its capability for semantic transmission. We also establish semantic communication systems of equivalent complexity employing the AE method and the VAE method. Experimental results reveal that the VSCC model offers superior interpretability compared to AE model, as it clearly captures the semantic features of the transmitted data, represented as the variance of latent variables in our experiments. In addition, VSCC model exhibits superior semantic transmission capabilities compared to VAE model. At the same level of data distortion evaluated by PSNR, VSCC model exhibits stronger human interpretability, which can be partially assessed by SSIM.
Submitted: Sep 26, 2024