Paper ID: 2410.08229
Improving Spiking Neural Network Accuracy With Color Model Information Encoded Bit Planes
Nhan T. Luu, Thang C. Truong, Duong T. Luu
Spiking neural networks (SNNs) have emerged as a promising paradigm in computational neuroscience and artificial intelligence, offering advantages such as low energy consumption and small memory footprint. However, their practical adoption is constrained by several challenges, prominently among them being performance optimization. In this study, we present a novel approach to enhance the performance of SNNs through a new encoding method that exploits bit planes derived from various color models of input image data for spike encoding. Our proposed technique is designed to improve the computational accuracy of SNNs compared to conventional methods without increasing model size. Through extensive experimental validation, we demonstrate the effectiveness of our encoding strategy in achieving performance gain across multiple computer vision tasks. To the best of our knowledge, this is the first research endeavor applying color spaces within the context of SNNs. By leveraging the unique characteristics of color spaces, we hope to unlock new potentials in SNNs performance, potentially paving the way for more efficient and effective SNNs models in future researches and applications.
Submitted: Sep 28, 2024