Paper ID: 2410.08442

JurEE not Judges: safeguarding llm interactions with small, specialised Encoder Ensembles

Dom Nasrabadi

We introduce JurEE, an ensemble of efficient, encoder-only transformer models designed to strengthen safeguards in AI-User interactions within LLM-based systems. Unlike existing LLM-as-Judge methods, which often struggle with generalization across risk taxonomies and only provide textual outputs, JurEE offers probabilistic risk estimates across a wide range of prevalent risks. Our approach leverages diverse data sources and employs progressive synthetic data generation techniques, including LLM-assisted augmentation, to enhance model robustness and performance. We create an in-house benchmark comprising of other reputable benchmarks such as the OpenAI Moderation Dataset and ToxicChat, where we find JurEE significantly outperforms baseline models, demonstrating superior accuracy, speed, and cost-efficiency. This makes it particularly suitable for applications requiring stringent content moderation, such as customer-facing chatbots. The encoder-ensemble's modular design allows users to set tailored risk thresholds, enhancing its versatility across various safety-related applications. JurEE's collective decision-making process, where each specialized encoder model contributes to the final output, not only improves predictive accuracy but also enhances interpretability. This approach provides a more efficient, performant, and economical alternative to traditional LLMs for large-scale implementations requiring robust content moderation.

Submitted: Oct 11, 2024