Paper ID: 2410.09127
CYCLE: Cross-Year Contrastive Learning in Entity-Linking
Pengyu Zhang, Congfeng Cao, Klim Zaporojets, Paul Groth
Knowledge graphs constantly evolve with new entities emerging, existing definitions being revised, and entity relationships changing. These changes lead to temporal degradation in entity linking models, characterized as a decline in model performance over time. To address this issue, we propose leveraging graph relationships to aggregate information from neighboring entities across different time periods. This approach enhances the ability to distinguish similar entities over time, thereby minimizing the impact of temporal degradation. We introduce \textbf{CYCLE}: \textbf{C}ross-\textbf{Y}ear \textbf{C}ontrastive \textbf{L}earning for \textbf{E}ntity-Linking. This model employs a novel graph contrastive learning method to tackle temporal performance degradation in entity linking tasks. Our contrastive learning method treats newly added graph relationships as \textit{positive} samples and newly removed ones as \textit{negative} samples. This approach helps our model effectively prevent temporal degradation, achieving a 13.90\% performance improvement over the state-of-the-art from 2023 when the time gap is one year, and a 17.79\% improvement as the gap expands to three years. Further analysis shows that CYCLE is particularly robust for low-degree entities, which are less resistant to temporal degradation due to their sparse connectivity, making them particularly suitable for our method. The code and data are made available at \url{this https URL}.
Submitted: Oct 11, 2024