Paper ID: 2410.09128

TIGER: Temporally Improved Graph Entity Linker

Pengyu Zhang, Congfeng Cao, Paul Groth

Knowledge graphs change over time, for example, when new entities are introduced or entity descriptions change. This impacts the performance of entity linking, a key task in many uses of knowledge graphs such as web search and recommendation. Specifically, entity linking models exhibit temporal degradation - their performance decreases the further a knowledge graph moves from its original state on which an entity linking model was trained. To tackle this challenge, we introduce \textbf{TIGER}: a \textbf{T}emporally \textbf{I}mproved \textbf{G}raph \textbf{E}ntity Linke\textbf{r}. By incorporating structural information between entities into the model, we enhance the learned representation, making entities more distinguishable over time. The core idea is to integrate graph-based information into text-based information, from which both distinct and shared embeddings are based on an entity's feature and structural relationships and their interaction. Experiments on three datasets show that our model can effectively prevent temporal degradation, demonstrating a 16.24\% performance boost over the state-of-the-art in a temporal setting when the time gap is one year and an improvement to 20.93\% as the gap expands to three years. The code and data are made available at \url{this https URL}.

Submitted: Oct 11, 2024