Paper ID: 2410.09449
Interpretable Video based Stress Detection with Self-Refine Chain-of-thought Reasoning
Yi Dai
Stress detection is a critical area of research with significant implications for health monitoring and intervention systems. In this paper, we propose a novel interpretable approach for video-based stress detection, leveraging self-refine chain-of-thought reasoning to enhance both accuracy and transparency in decision-making processes. Our method focuses on extracting subtle behavioral and physiological cues from video sequences that indicate stress levels. By incorporating a chain-of-thought reasoning mechanism, the system refines its predictions iteratively, ensuring that the decision-making process can be traced and explained. The model also learns to self-refine through feedback loops, improving its reasoning capabilities over time. We evaluate our approach on several public and private datasets, demonstrating its superior performance in comparison to traditional video-based stress detection methods. Additionally, we provide comprehensive insights into the interpretability of the model's predictions, making the system highly valuable for applications in both healthcare and human-computer interaction domains.
Submitted: Oct 12, 2024