Paper ID: 2410.09763

EEG-based AI-BCI Wheelchair Advancement: A Brain-Computer Interfacing Wheelchair System Using Machine Learning Mechanism with Right and Left Voluntary Hand Movement

Biplov Paneru, Bishwash Paneru, Khem Narayan Poudyal

This paper presents an Artificial Intelligence (AI) integrated novel approach to Brain-Computer Interface (BCI)-based wheelchair development, utilizing a voluntary Right Left Hand Movement mechanism for control. The system is designed to simulate wheelchair navigation based on voluntary right and left-hand movements using electroencephalogram (EEG) data. A pre-filtered dataset, obtained from an open-source EEG repository, was segmented into arrays of 19x200 to capture the onset of hand movements. The data was acquired at a sampling frequency 200Hz in the laboratory experiment. The system integrates a Tkinter-based interface for simulating wheelchair movements, offering users a functional and intuitive control system. Various machine learning models, including Support Vector Machines (SVM), XGBoost, random forest, and a Bi-directional Long Short-Term Memory (Bi-LSTM) attention-based model, were developed. The random forest model obtained 79% accuracy. Great performance was seen on the Logistic Regression model which outperforms other models with 92% accuracy and 91% accuracy on the Multi-Layer Perceptron (MLP) model. The Bi-LSTM attention-based model achieved a mean accuracy of 86% through cross-validation, showcasing the potential of attention mechanisms in BCI applications.

Submitted: Oct 13, 2024