Paper ID: 2410.09775
EasyJudge: an Easy-to-use Tool for Comprehensive Response Evaluation of LLMs
Yijie Li, Yuan Sun
Recently, there has been a growing trend of employing large language models (LLMs) to judge the quality of other LLMs. Many studies have adopted closed-source models, mainly using GPT-4 as the evaluator. However, due to the closed-source nature of the GPT-4 model, employing it as an evaluator has resulted in issues including transparency, controllability, and cost-effectiveness. Some researchers have turned to using fine-tuned open-source LLMs as evaluators. However, existing open-source evaluation LLMs generally lack a user-friendly visualization tool, and they have not been optimized for accelerated model inference, which causes inconvenience for researchers with limited resources and those working across different fields. This paper presents EasyJudge, a model developed to evaluate significant language model responses. It is lightweight, precise, efficient, and user-friendly, featuring an intuitive visualization interface for ease of deployment and use. EasyJudge uses detailed datasets and refined prompts for model optimization, achieving strong consistency with human and proprietary model evaluations. The model optimized with quantitative methods enables EasyJudge to run efficiently on consumer-grade GPUs or even CPUs. We also provide detailed analysis and case studies to further reveal the potential of our method.
Submitted: Oct 13, 2024