Paper ID: 2410.11265
In-Context Learning for Long-Context Sentiment Analysis on Infrastructure Project Opinions
Alireza Shamshiri, Kyeong Rok Ryu, June Young Park
Large language models (LLMs) have achieved impressive results across various tasks. However, they still struggle with long-context documents. This study evaluates the performance of three leading LLMs: GPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro on lengthy, complex, and opinion-varying documents concerning infrastructure projects, under both zero-shot and few-shot scenarios. Our results indicate that GPT-4o excels in zero-shot scenarios for simpler, shorter documents, while Claude 3.5 Sonnet surpasses GPT-4o in handling more complex, sentiment-fluctuating opinions. In few-shot scenarios, Claude 3.5 Sonnet outperforms overall, while GPT-4o shows greater stability as the number of demonstrations increases.
Submitted: Oct 15, 2024