Paper ID: 2410.11457
LR-SQL: A Supervised Fine-Tuning Method for Text2SQL Tasks under Low-Resource Scenarios
Wen Wuzhenghong, Zhang Yongpan, Pan Su, Sun Yuwei, Lu Pengwei, Ding Cheng
Large language models revolutionize Text2SQL through supervised fine-tuning, yet a crucial limitation is overlooked: the complexity of databases leads to an increased context length, consequently resulting in higher GPU memory demands for model fine-tuning. To address this issue, we propose LR-SQL. LR-SQL comprises two supervised fine-tuning models: the schema\_link model and the SQL\_generation model, with the schema\_link model serving as the focal point for streamlining the overall process. During the fine-tuning of the schema\_link model, LR-SQL breaks down the complete database into flexible combinations of tables with adjustable quantities, enabling the model to learn the relationships within the entire database from these dispersed slices. Furthermore, to enhance the model's ability to perceive the relationships among various discrete slices during inference, LR-SQL trains the model's Chain-of-Thought capability for this task. Experimental results demonstrate that LR-SQL can reduce the total GPU memory usage by 40\% compared to existing fine-tuning methods, while only losing 2\% of table prediction accuracy in schema\_link task. For the overall Text2SQL task, the Execution Accuracy decrease by 0.6\%.Our project is now available on this https URL
Submitted: Oct 15, 2024