Paper ID: 2410.11539

Transfer Learning with Foundational Models for Time Series Forecasting using Low-Rank Adaptations

M. Germán-Morales, A.J. Rivera-Rivas, M.J. del Jesus Díaz, C.J. Carmona

High computational power and the availability of large datasets have supported the development of Foundational Models. They are a new emerging technique widely used in Generative Artificial Intelligence, characterized by their scalability and their use in Transfer Learning. The enormous and heterogeneous amounts of data used in their initial training phase, known as pre-training, give them a higher generalization capacity than any other specific model, constituting a solid base that can be adapted or adjusted to a wide range of tasks, increasing their applicability. This study proposes LLIAM, the Llama Lora-Integrated Autorregresive Model. Low-Rank Adaptations are used to enhance the knowledge of the model with diverse time series datasets, known as the fine-tuning phase. To illustrate the capabilities of our proposal, two sets of experiments have been carried out that obtained favorable and promising results with lower training times than other Deep Learning approaches. With this work, we also encourage the use of available resources (such as these pre-trained models) to avoid unnecessary and costly training, narrowing the gap between the goals of traditional Artificial Intelligence and those specified by the definition of Green Artificial Intelligence.

Submitted: Oct 15, 2024