Paper ID: 2410.12010

Bias Similarity Across Large Language Models

Hyejun Jeong, Shiqing Ma, Amir Houmansadr

Bias in machine learning models has been a chronic problem, especially as these models influence decision-making in human society. In generative AI, such as Large Language Models, the impact of bias is even more profound compared to the classification models. LLMs produce realistic and human-like content that users may unconsciously trust, which could perpetuate harmful stereotypes to the uncontrolled public. It becomes particularly concerning when utilized in journalism or education. While prior studies have explored and quantified bias in individual AI models, no work has yet compared bias similarity across different LLMs. To fill this gap, we take a comprehensive look at ten open- and closed-source LLMs from four model families, assessing the extent of biases through output distribution. Using two datasets-one containing 4k questions and another with one million questions for each of the four bias dimensions -- we measure functional similarity to understand how biases manifest across models. Our findings reveal that 1) fine-tuning does not significantly alter output distributions, which would limit its ability to mitigate bias, 2) LLMs within the same family tree do not produce similar output distributions, implying that addressing bias in one model could have limited implications for others in the same family, and 3) there is a possible risk of training data information leakage, raising concerns about privacy and data security. Our analysis provides insight into LLM behavior and highlights potential risks in real-world deployment.

Submitted: Oct 15, 2024