Paper ID: 2410.12207

Divide-Verify-Refine: Aligning LLM Responses with Complex Instructions

Xianren Zhang, Xianfeng Tang, Hui Liu, Zongyu Wu, Qi He, Dongwon Lee, Suhang Wang

Recent studies show that LLMs, particularly open-source models, struggle to follow complex instructions with multiple constraints. Despite the importance, methods to improve LLMs' adherence to such constraints remain unexplored, and current research focuses on evaluating this ability rather than developing solutions. While a few studies enhance constraint adherence through model tuning, this approach is computationally expensive and heavily reliant on training data quality. An alternative is to leverage LLMs' self-correction capabilities, allowing them to adjust responses to better meet specified constraints. However, this self-correction ability of LLMs is limited by the feedback quality, as LLMs cannot autonomously generate reliable feedback or detect errors. Moreover, the self-refinement process heavily depends on few-shot examples that illustrate how to modify responses to meet constraints. As constraints in complex instructions are diverse and vary widely, manually crafting few-shot examples for each constraint type can be labor-intensive and sub-optimal. To deal with these two challenges, we propose the Divide-Verify-Refine (DVR) framework with three steps: (1) Divide complex instructions into single constraints and prepare appropriate tools; (2) Verify: To address the feedback quality problem, these tools will rigorously verify responses and provide reliable feedback; (3) Refine: To address the constraint diversity challenge, we design a refinement repository that collects successful refinement processes and uses them as few-shot demonstrations for future cases, allowing LLMs to learn from the past experience during inference. Additionally, we develop a new dataset of complex instructions, each containing 1-6 constraints. Experiments show that the framework significantly improves performance, doubling LLama3.1-8B's constraint adherence on instructions with 6 constraints.

Submitted: Oct 16, 2024