Paper ID: 2410.12337

ARIC: An Activity Recognition Dataset in Classroom Surveillance Images

Linfeng Xu, Fanman Meng, Qingbo Wu, Lili Pan, Heqian Qiu, Lanxiao Wang, Kailong Chen, Kanglei Geng, Yilei Qian, Haojie Wang, Shuchang Zhou, Shimou Ling, Zejia Liu, Nanlin Chen, Yingjie Xu, Shaoxu Cheng, Bowen Tan, Ziyong Xu, Hongliang Li

The application of activity recognition in the ``AI + Education" field is gaining increasing attention. However, current work mainly focuses on the recognition of activities in manually captured videos and a limited number of activity types, with little attention given to recognizing activities in surveillance images from real classrooms. Activity recognition in classroom surveillance images faces multiple challenges, such as class imbalance and high activity similarity. To address this gap, we constructed a novel multimodal dataset focused on classroom surveillance image activity recognition called ARIC (Activity Recognition In Classroom). The ARIC dataset has advantages of multiple perspectives, 32 activity categories, three modalities, and real-world classroom scenarios. In addition to the general activity recognition tasks, we also provide settings for continual learning and few-shot continual learning. We hope that the ARIC dataset can act as a facilitator for future analysis and research for open teaching scenarios. You can download preliminary data from this https URL

Submitted: Oct 16, 2024