Paper ID: 2410.12485
Data-Driven Gyroscope Calibration
Zeev Yampolsky, Itzik Klein
Gyroscopes are inertial sensors that measure the angular velocity of the platforms to which they are attached. To estimate the gyroscope deterministic error terms prior mission start, a calibration procedure is performed. When considering low-cost gyroscopes, the calibration requires a turntable as the gyros are incapable of sensing the Earth turn rate. In this paper, we propose a data-driven framework to estimate the scale factor and bias of a gyroscope. To train and validate our approach, a dataset of 56 minutes was recorded using a turntable. We demonstrated that our proposed approach outperforms the model-based approach, in terms of accuracy and convergence time. Specifically, we improved the scale factor and bias estimation by an average of 72% during six seconds of calibration time, demonstrating an average of 75% calibration time improvement. That is, instead of minutes, our approach requires only several seconds for the calibration.
Submitted: Oct 16, 2024