Paper ID: 2410.12941
Gradient Map-Assisted Head and Neck Tumor Segmentation: A Pre-RT to Mid-RT Approach in MRI-Guided Radiotherapy
Jintao Ren, Kim Hochreuter, Mathis Ersted Rasmussen, Jesper Folsted Kallehauge, Stine Sofia Korreman
Radiation therapy (RT) is a vital part of treatment for head and neck cancer, where accurate segmentation of gross tumor volume (GTV) is essential for effective treatment planning. This study investigates the use of pre-RT tumor regions and local gradient maps to enhance mid-RT tumor segmentation for head and neck cancer in MRI-guided adaptive radiotherapy. By leveraging pre-RT images and their segmentations as prior knowledge, we address the challenge of tumor localization in mid-RT segmentation. A gradient map of the tumor region from the pre-RT image is computed and applied to mid-RT images to improve tumor boundary delineation. Our approach demonstrated improved segmentation accuracy for both primary GTV (GTVp) and nodal GTV (GTVn), though performance was limited by data constraints. The final DSCagg scores from the challenge's test set evaluation were 0.534 for GTVp, 0.867 for GTVn, and a mean score of 0.70. This method shows potential for enhancing segmentation and treatment planning in adaptive radiotherapy. Team: DCPT-Stine's group.
Submitted: Oct 16, 2024