Paper ID: 2410.13344

Cerberus: Efficient Inference with Adaptive Parallel Decoding and Sequential Knowledge Enhancement

Yuxuan Liu, Wenyuan Li, Laizhong Cui, Hailiang Yang

Large language models (LLMs) often face a bottleneck in inference speed due to their reliance on auto-regressive decoding. Recently, parallel decoding has shown significant promise in enhancing inference efficiency. However, we have identified two key issues with existing parallel decoding frameworks: (1) decoding heads fail to balance prediction accuracy and the parallelism of execution, and (2) parallel decoding is not a universal solution, as it can bring unnecessary overheads at some challenging decoding steps. To address these issues, we propose Cerberus, an adaptive parallel decoding framework introduces the gating mechanism to enable the LLMs to adaptively choose appropriate decoding approaches at each decoding step, along with introducing a new paradigm of decoding heads that introduce the sequential knowledge while maintaining execution parallelism. The experiment results demonstrate that the Cerberus can achieve up to 2.12x speed up compared to auto-regressive decoding, and outperforms one of the leading parallel decoding frameworks, Medusa, with a 10% - 30% increase in acceleration and superior generation quality.

Submitted: Oct 17, 2024