Paper ID: 2410.13392
Metacognitive Monitoring: A Human Ability Beyond Generative Artificial Intelligence
Markus Huff, Elanur Ulakçı
Large language models (LLMs) have shown impressive alignment with human cognitive processes, raising questions about the extent of their similarity to human cognition. This study investigates whether LLMs, specifically ChatGPT, possess metacognitive monitoring abilities akin to humans-particularly in predicting memory performance on an item-by-item basis. We employed a cross-agent prediction model to compare the metacognitive performance of humans and ChatGPT in a language-based memory task involving garden-path sentences preceded by either fitting or unfitting context sentences. Both humans and ChatGPT rated the memorability of these sentences; humans then completed a surprise recognition memory test. Our findings reveal a significant positive relationship between humans' memorability ratings and their actual recognition performance, indicating reliable metacognitive monitoring. In contrast, ChatGPT did not exhibit a similar predictive capability. Bootstrapping analyses demonstrated that none of the GPT models tested (GPT-3.5-turbo, GPT-4-turbo, GPT-4o) could accurately predict human memory performance on a per-item basis. This suggests that, despite their advanced language processing abilities and alignment with human cognition at the object level, current LLMs lack the metacognitive mechanisms that enable humans to anticipate their memory performance. These results highlight a fundamental difference between human and AI cognition at the metacognitive level. Addressing this gap is crucial for developing AI systems capable of effective self-monitoring and adaptation to human needs, thereby enhancing human-AI interactions across domains such as education and personalized learning.
Submitted: Oct 17, 2024