Paper ID: 2410.13454
Byzantine-Resilient Output Optimization of Multiagent via Self-Triggered Hybrid Detection Approach
Chenhang Yan, Liping Yan, Yuezu Lv, Bolei Dong, Yuanqing Xia
How to achieve precise distributed optimization despite unknown attacks, especially the Byzantine attacks, is one of the critical challenges for multiagent systems. This paper addresses a distributed resilient optimization for linear heterogeneous multi-agent systems faced with adversarial threats. We establish a framework aimed at realizing resilient optimization for continuous-time systems by incorporating a novel self-triggered hybrid detection approach. The proposed hybrid detection approach is able to identify attacks on neighbors using both error thresholds and triggering intervals, thereby optimizing the balance between effective attack detection and the reduction of excessive communication triggers. Through using an edge-based adaptive self-triggered approach, each agent can receive its neighbors' information and determine whether these information is valid. If any neighbor prove invalid, each normal agent will isolate that neighbor by disconnecting communication along that specific edge. Importantly, our adaptive algorithm guarantees the accuracy of the optimization solution even when an agent is isolated by its neighbors.
Submitted: Oct 17, 2024