Paper ID: 2410.13498
Enhancing Text Generation in Joint NLG/NLU Learning Through Curriculum Learning, Semi-Supervised Training, and Advanced Optimization Techniques
Rahimanuddin Shaik, Katikela Sreeharsha Kishore
Text generation is the automated process of producing written or spoken language using computational methods. It involves generating coherent and contextually relevant text based on predefined rules or learned patterns. However, challenges in text generation arise from maintaining coherence, ensuring diversity and creativity, and avoiding biases or inappropriate content. This research paper developed a novel approach to improve text generation in the context of joint Natural Language Generation (NLG) and Natural Language Understanding (NLU) learning. The data is prepared by gathering and preprocessing annotated datasets, including cleaning, tokenization, stemming, and stop-word removal. Feature extraction techniques such as POS tagging, Bag of words, and Term Frequency-Inverse Document Frequency (TF-IDF) are applied. Transformer-based encoders and decoders, capturing long range dependencies and improving source-target sequence modelling. Pre-trained language models like Optimized BERT are incorporated, along with a Hybrid Redfox Artificial Hummingbird Algorithm (HRAHA). Reinforcement learning with policy gradient techniques, semi-supervised training, improved attention mechanisms, and differentiable approximations like straight-through Gumbel SoftMax estimator are employed to fine-tune the models and handle complex linguistic tasks effectively. The proposed model is implemented using Python.
Submitted: Oct 17, 2024