Paper ID: 2410.14062

Data-driven rainfall prediction at a regional scale: a case study with Ghana

Indrajit Kalita, Lucia Vilallonga, Yves Atchade

With a warming planet, tropical regions are expected to experience the brunt of climate change, with more intense and more volatile rainfall events. Currently, state-of-the-art numerical weather prediction (NWP) models are known to struggle to produce skillful rainfall forecasts in tropical regions of Africa. There is thus a pressing need for improved rainfall forecasting in these regions. Over the last decade or so, the increased availability of large-scale meteorological datasets and the development of powerful machine learning models have opened up new opportunities for data-driven weather forecasting. Focusing on Ghana in this study, we use these tools to develop two U-Net convolutional neural network (CNN) models, to predict 24h rainfall at 12h and 30h lead-time. The models were trained using data from the ERA5 reanalysis dataset, and the GPM-IMERG dataset. A special attention was paid to interpretability. We developed a novel statistical methodology that allowed us to probe the relative importance of the meteorological variables input in our model, offering useful insights into the factors that drive precipitation in the Ghana region. Empirically, we found that our 12h lead-time model has performances that match, and in some accounts are better than the 18h lead-time forecasts produced by the ECMWF (as available in the TIGGE dataset). We also found that combining our data-driven model with classical NWP further improves forecast accuracy.

Submitted: Oct 17, 2024