Paper ID: 2410.14262

Good Parenting is all you need -- Multi-agentic LLM Hallucination Mitigation

Edward (Ted) Kwartler, Matthew Berman, Alan Aqrawi

This study explores the ability of Large Language Model (LLM) agents to detect and correct hallucinations in AI-generated content. A primary agent was tasked with creating a blog about a fictional Danish artist named Flipfloppidy, which was then reviewed by another agent for factual inaccuracies. Most LLMs hallucinated the existence of this artist. Across 4,900 test runs involving various combinations of primary and reviewing agents, advanced AI models such as Llama3-70b and GPT-4 variants demonstrated near-perfect accuracy in identifying hallucinations and successfully revised outputs in 85% to 100% of cases following feedback. These findings underscore the potential of advanced AI models to significantly enhance the accuracy and reliability of generated content, providing a promising approach to improving AI workflow orchestration.

Submitted: Oct 18, 2024