Paper ID: 2410.14680
Influence of Backdoor Paths on Causal Link Prediction
Utkarshani Jaimini, Cory Henson, Amit Sheth
The current method for predicting causal links in knowledge graphs uses weighted causal relations. For a given link between cause-effect entities, the presence of a confounder affects the causal link prediction, which can lead to spurious and inaccurate results. We aim to block these confounders using backdoor path adjustment. Backdoor paths are non-causal association flows that connect the \textit{cause-entity} to the \textit{effect-entity} through other variables. Removing these paths ensures a more accurate prediction of causal links. This paper proposes CausalLPBack, a novel approach to causal link prediction that eliminates backdoor paths and uses knowledge graph link prediction methods. It extends the representation of causality in a neuro-symbolic framework, enabling the adoption and use of traditional causal AI concepts and methods. We demonstrate our approach using a causal reasoning benchmark dataset of simulated videos. The evaluation involves a unique dataset splitting method called the Markov-based split that's relevant for causal link prediction. The evaluation of the proposed approach demonstrates atleast 30\% in MRR and 16\% in Hits@K inflated performance for causal link prediction that is due to the bias introduced by backdoor paths for both baseline and weighted causal relations.
Submitted: Sep 12, 2024