Paper ID: 2410.14700

Self-Supervised Keypoint Detection with Distilled Depth Keypoint Representation

Aman Anand, Elyas Rashno, Amir Eskandari, Farhana Zulkernine

Existing unsupervised keypoint detection methods apply artificial deformations to images such as masking a significant portion of images and using reconstruction of original image as a learning objective to detect keypoints. However, this approach lacks depth information in the image and often detects keypoints on the background. To address this, we propose Distill-DKP, a novel cross-modal knowledge distillation framework that leverages depth maps and RGB images for keypoint detection in a self-supervised setting. During training, Distill-DKP extracts embedding-level knowledge from a depth-based teacher model to guide an image-based student model with inference restricted to the student. Experiments show that Distill-DKP significantly outperforms previous unsupervised methods by reducing mean L2 error by 47.15% on Human3.6M, mean average error by 5.67% on Taichi, and improving keypoints accuracy by 1.3% on DeepFashion dataset. Detailed ablation studies demonstrate the sensitivity of knowledge distillation across different layers of the network. Project Page: this https URL

Submitted: Oct 4, 2024