Paper ID: 2410.15045
Mind the Remaining: Mechanism Design for Robust Federated Unlearning
Jiaqi Shao, Tao Lin, Bing Luo
Federated Unlearning (FU) aims to remove target clients' influence from trained models for privacy regulations. However, due to data distribution shifts, it can introduce side effects, including global model performance degradation and uneven impacts on the remaining clients. These effects potentially cause remaining clients to deviate, threatening the system's robustness. To address these challenges, we present a novel and robust mechanism modeling a Stackelberg game for FU. In this game, the server designs an optimal payment to stimulate remaining clients to participate in FU, ensuring unlearning effectiveness and stability. In response, the remaining clients strategically determine their participation level to maximize profit, accounting for offered payments and unlearning impacts. In modeling FU outcomes, we develop, for the first time, a comprehensive framework analytically capturing FU-induced side effects for both the server and clients. Based on this, we establish utility functions for the server and clients in FU, inherently determining their dynamic strategic decision-making. Our rigorous equilibrium analysis reveals how data heterogeneity affects the side effects in their utility and decision-making. Additionally, we develop a low-complexity algorithm for the non-convex optimization problem, enabling efficient computation of the equilibrium.
Submitted: Oct 19, 2024