Paper ID: 2410.15067
A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends
Junjun Jiang, Zengyuan Zuo, Gang Wu, Kui Jiang, Xianming Liu
Image restoration (IR) refers to the process of improving visual quality of images while removing degradation, such as noise, blur, weather effects, and so on. Traditional IR methods typically target specific types of degradation, which limits their effectiveness in real-world scenarios with complex distortions. In response to this challenge, the all-in-one image restoration (AiOIR) paradigm has emerged, offering a unified framework that adeptly addresses multiple degradation types. These innovative models enhance both convenience and versatility by adaptively learning degradation-specific features while simultaneously leveraging shared knowledge across diverse corruptions. In this review, we delve into the AiOIR methodologies, emphasizing their architecture innovations and learning paradigm and offering a systematic review of prevalent approaches. We systematically categorize prevalent approaches and critically assess the challenges these models encounter, proposing future research directions to advance this dynamic field. Our paper begins with an introduction to the foundational concepts of AiOIR models, followed by a categorization of cutting-edge designs based on factors such as prior knowledge and generalization capability. Next, we highlight key advancements in AiOIR, aiming to inspire further inquiry and innovation within the community. To facilitate a robust evaluation of existing methods, we collate and summarize commonly used datasets, implementation details, and evaluation metrics. Additionally, we present an objective comparison of open-sourced methods, providing valuable insights for researchers and practitioners alike. This paper stands as the first comprehensive and insightful review of AiOIR. A related repository is available at this https URL
Submitted: Oct 19, 2024