Paper ID: 2410.15581

Multimodal Learning for Embryo Viability Prediction in Clinical IVF

Junsik Kim, Zhiyi Shi, Davin Jeong, Johannes Knittel, Helen Y. Yang, Yonghyun Song, Wanhua Li, Yicong Li, Dalit Ben-Yosef, Daniel Needleman, Hanspeter Pfister

In clinical In-Vitro Fertilization (IVF), identifying the most viable embryo for transfer is important to increasing the likelihood of a successful pregnancy. Traditionally, this process involves embryologists manually assessing embryos' static morphological features at specific intervals using light microscopy. This manual evaluation is not only time-intensive and costly, due to the need for expert analysis, but also inherently subjective, leading to variability in the selection process. To address these challenges, we develop a multimodal model that leverages both time-lapse video data and Electronic Health Records (EHRs) to predict embryo viability. One of the primary challenges of our research is to effectively combine time-lapse video and EHR data, owing to their inherent differences in modality. We comprehensively analyze our multimodal model with various modality inputs and integration approaches. Our approach will enable fast and automated embryo viability predictions in scale for clinical IVF.

Submitted: Oct 21, 2024