Paper ID: 2410.15909
Hybrid Architecture for Real-Time Video Anomaly Detection: Integrating Spatial and Temporal Analysis
Fabien Poirier
We propose a new architecture for real-time anomaly detection in video data, inspired by human behavior by combining spatial and temporal analyses. This approach uses two distinct models: for temporal analysis, a recurrent convolutional network (CNN + RNN) is employed, associating VGG19 and a GRU to process video sequences. Regarding spatial analysis, it is performed using YOLOv7 to analyze individual images. These two analyses can be carried out either in parallel, with a final prediction that combines the results of both analyses, or in series, where the spatial analysis enriches the data before the temporal analysis. In this article, we will compare these two architectural configurations with each other, to evaluate the effectiveness of our hybrid approach in video anomaly detection.
Submitted: Oct 21, 2024