Paper ID: 2410.15986

A quantitative Robbins-Siegmund theorem

Morenikeji Neri, Thomas Powell

The Robbins-Siegmund theorem is one of the most important results in stochastic optimization, where it is widely used to prove the convergence of stochastic algorithms. We provide a quantitative version of the theorem, establishing a bound on how far one needs to look in order to locate a region of metastability in the sense of Tao. Our proof involves a metastable analogue of Doob's theorem for $L_1$-supermartingales along with a series of technical lemmas that make precise how quantitative information propagates through sums and products of stochastic processes. In this way, our paper establishes a general methodology for finding metastable bounds for stochastic processes that can be reduced to supermartingales, and therefore for obtaining quantitative convergence information across a broad class of stochastic algorithms whose convergence proof relies on some variation of the Robbins-Siegmund theorem. We conclude by discussing how our general quantitative result might be used in practice.

Submitted: Oct 21, 2024