Paper ID: 2410.16100

ExDBN: Exact learning of Dynamic Bayesian Networks

Pavel Rytíř, Aleš Wodecki, Georgios Korpas, Jakub Mareček

Causal learning from data has received much attention in recent years. One way of capturing causal relationships is by utilizing Bayesian networks. There, one recovers a weighted directed acyclic graph, in which random variables are represented by vertices, and the weights associated with each edge represent the strengths of the causal relationships between them. This concept is extended to capture dynamic effects by introducing a dependency on past data, which may be captured by the structural equation model, which is utilized in the present contribution to formulate a score-based learning approach. A mixed-integer quadratic program is formulated and an algorithmic solution proposed, in which the pre-generation of exponentially many acyclicity constraints is avoided by utilizing the so-called branch-and-cut ("lazy constraint") method. Comparing the novel approach to the state of the art, we show that the proposed approach turns out to produce excellent results when applied to small and medium-sized synthetic instances of up to 25 time-series. Lastly, two interesting applications in bio-science and finance, to which the method is directly applied, further stress the opportunities in developing highly accurate, globally convergent solvers that can handle modest instances.

Submitted: Oct 21, 2024