Paper ID: 2410.16692
Lower Bounds for Time-Varying Kernelized Bandits
Xu Cai, Jonathan Scarlett
The optimization of black-box functions with noisy observations is a fundamental problem with widespread applications, and has been widely studied under the assumption that the function lies in a reproducing kernel Hilbert space (RKHS). This problem has been studied extensively in the stationary setting, and near-optimal regret bounds are known via developments in both upper and lower bounds. In this paper, we consider non-stationary scenarios, which are crucial for certain applications but are currently less well-understood. Specifically, we provide the first algorithm-independent lower bounds, where the time variations are subject satisfying a total variation budget according to some function norm. Under $\ell_{\infty}$-norm variations, our bounds are found to be close to the state-of-the-art upper bound (Hong \emph{et al.}, 2023). Under RKHS norm variations, the upper and lower bounds are still reasonably close but with more of a gap, raising the interesting open question of whether non-minor improvements in the upper bound are possible.
Submitted: Oct 22, 2024