Paper ID: 2410.17288
Stool Recognition for Colorectal Cancer Detection through Deep Learning
Glenda Hui En Tan (1), Goh Xin Ru Karin (2), Shen Bingquan (3) ((1) Carnegie Mellon University, (2) London School of Economics and Political Science, (3) DSO National Laboratories Singapore)
Colorectal cancer is the most common cancer in Singapore and the third most common cancer worldwide. Blood in a person's stool is a symptom of this disease, and it is usually detected by the faecal occult blood test (FOBT). However, the FOBT presents several limitations - the collection process for the stool samples is tedious and unpleasant, the waiting period for results is about 2 weeks and costs are involved. In this research, we propose a simple-to-use, fast and cost-free alternative - a stool recognition neural network that determines if there is blood in one's stool (which indicates a possible risk of colorectal cancer) from an image of it. As this is a new classification task, there was limited data available, hindering classifier performance. Hence, various Generative Adversarial Networks (GANs) (DiffAugment StyleGAN2, DCGAN, Conditional GAN) were trained to generate images of high fidelity to supplement the dataset. Subsequently, images generated by the GAN with the most realistic images (DiffAugment StyleGAN2) were concatenated to the classifier's training batch on-the-fly, improving accuracy to 94%. This model was then deployed to a mobile app - Poolice, where users can take a photo of their stool and obtain instantaneous results if there is blood in their stool, prompting those who do to seek medical advice. As "early detection saves lives", we hope our app built on our stool recognition neural network can help people detect colorectal cancer earlier, so they can seek treatment and have higher chances of survival.
Submitted: Oct 19, 2024